ODA-UNESCO Project:

'Promotion of Energy Science Education for Sustainable Development in Laos:"

Energy, its Impacts to Environment, and Energy Efficiency Concept and fundamentals

Prepared by: Assoc. Prof. Sengratry KYTHAVONE Department of Mechanical Engineering, Faculty of Engineering National University of Laos

What is Energy

Energy is basically the capacity of a body to do work. The different forms of energy are: Mechanical energy, Thermal (or) Heat energy, Chemical energy, Electrical energy, Nuclear energy, Electromagnetic energy, Gravitational energy.

Energy: Classify by sources Primary Energy & Secondary Energy

Energy: Classify by sources used

Renewable Energy

Non-Renewable Energy

Significance of renewable energy

- Clean energy. Harmless to the environment
- Unlimited and reusable
- Raise Employed and good economy system

Energy: Classify by production Conventional and Non-Conventional Energy

Conventional energy sources include fossil fuel energy and nuclear energy. It is a non renewable source of energy.

© 2001 Brooks/Cole Publishing(1)

Non conventional energy sources include wind energy, tidal energy, solar energy, bio energy & fuel cell energy. It is renewable source of energy.

Commercial and Non-Commercial Energy

- Commercial Energy is energy available at price, and industrial production.
 - Examples are electricity, coal, lignite, oil, and natural gas
- Non-Commercial Energy is energy not available in market for a price, and household production.
 - •Examples are firewood, cattle dung and agricultural waste solar energy, animal power, wind energy.

Global Primary Energy Consumption

World Energy Consumption

60% of world Resources consumed so far

85% of raw energy comes from non-renewable sources and hence not available for Future generation

Remaining resource of the world

	Crude oil	Petroleum gas	Coal	Uranium
Total remaining	1.46 Mill. Mill. Barrel	150 Mill. Mill. m ³	984.2 Th. Mill. Tons	3.95 Mill. Tons
Production per year	26.2 Th. Mill. Barrel	2.4 Mill. Mill. m ³	4.34 Th. Mill. Tons	35 Th. Tons
Enough to use for	40 Years	61 Years	227 Years	64 Years

Impact of Energy Consumption on Environment

Carbon Dioxide gas can be produced from combustion process is greenhouse gases

Impact of Energy Consumption on Environment

The Greenhouse Effect

Greenhouse gases

- Carbon Dioxide, Methane, Nitrous Oxide, Chlorofluorocarbons (CFCs), Ozone

The effect is increasing temperatures on Earth

CLIMATE CHANGE

Greenhouse gases are increasing...

Projection of Average Temperature Rise of Earth (IPCC)

CLIMATE CHANGE

Less visual but with major impact

Consequences of climate change:

- > Sea level rise
- > More rain

Agriculture and food security Crop yields, irrigation demands...

Forest

Composition, health and productivity...

Water resources

Water supply, water quality...

Coastal areas

Erosion, inundation, cost of prevention...

Species and natural areas

Biodiversity, modification of ecosystems...

Infectious diseases, human settlements...

Why Energy Efficiency?

- Three top operating expenses are energy (both electrical and thermal), labour and materials;
- Energy would emerge as a top ranker for cost reduction;
- If we are more efficient with the energy, we already have there will be less pollution, less reliance on foreign oil and increased domestic security;
- Continue increasing of energy pricing;
- Energy security.

Energy Efficiency

$$Efficiency = \frac{Useful\ Energy\ Output}{Total\ Energy\ Input}$$

Efficiency of Some Common Devices

Device	Efficiency
Electric Motor	90
Home Oil Furnace	65
Home Coal Furnace	55
Steam Boiler (power plant)	89
Power Plant (thermal)	36
Automobile Engine	25
Light Bulb-Fluorescent	20
Light Bulb -Incandescent	5

Vehicle Efficiency – Gasoline Engine

25% Of the gasoline is used to propel a car, the rest is "lost" as heat. i.e an efficiency of 0.25

What is Energy Efficiency?

Conversion	Example	Efficiency (%)
Chemical to heat	Gas water boiler	70-90
Electrical to mechanical	Electric motor	70-90
Heat to mechanical	Steam turbine	45

- Portion of Energy which ends up doing useful work
- Energy efficiency means using less energy to perform the same function.
- Example: Replacing traditional light bulbs with Compact Fluorescent Lamps (CFLs) means you will use only 1/5th of the energy to light a room

Energy Conservation vs Energy Efficiency

Energy Efficiency uses less energy for same output and reduces CO₂ emissions

Incandescent Lamp 100 W

CO₂ Emission – 110 g/hr

Compact fluorescent Lamp 18W

CO₂ Emission – 20 g/hr

Energy transformation & energy conversion efficiency

Oil generate heat --

Heat boils water -->

Water turns to steam -->

Steam pressure turns a turbine -->

Turbine turns an electric generator -->

Generator produces electricity -->

Electricity powers light bulbs -->

Light bulbs give off light and heat

Understanding energy costs

Typical summary of energy bill by a company

Type of energy	Original Unit	Unit Cost	Monthly bill	Equivale nt cost US\$
Electricity	350,000 kWh	Kip 700/kWh	245,000,000	30,625
Fuel Oil	100 kl	Kip 6,000,000/kl	600,000,000	75,000
Coal	1,000 tons	Kip 300,000/ton	300,000,000	37,500
		Total:	1,145,000,000	143,125

Electricity (1 kWh)
Heavy fuel oil (calorific value, GCV)
Coal (calorific value, GCV)
1 kcal = 4.187 KJ

= 860 kcal/kWh (3600 kJ)

=10000 kcal/litre (42000 kJ/litre)

=4000 kcal/kg (18*106 kJ/ton)

Energy Conservation Opportunities

- Energy distribution
- Energy generation
- Energy usage by processes
- Fuel substitution

Maximizing system efficiency

- Eliminate steam leakages by trap improvements
- Maximize condensate recovery;
- Adopt combustion controls for maximizing combustion efficiency;
- Replace pumps, fans, air compressors, refrigeration compressors, boilers, furnaces, heaters and other energy conservation equipment, wherever significant energy efficiency margins exist.

Matching Energy Usage to Requirement

- Mismatch between equipment capacity and user requirement often leads to inefficiencies due to part load operations, wastages etc
- Examples:
 - > Eliminate throttling
 - > Eliminate damper operations
 - > Fan resizing for better efficiency.
 - Moderation of chilled water temperature for process chilling needs

Optimizing Input Energy Requirement

- Shuffling of compressors to match needs.
- Periodic review of insulation thickness
- Identify potential for heat exchanger networking and process integration.
- Optimization of transformer operation with respect to load

Fuel and Energy Substitution

Fuel substitution

- Natural gas is increasingly the fuel of choice as fuel and feedstock in the fertilizer, petrochemicals, power and sponge iron industries.
- Replacement of coal by coconut shells, rice husk, etc
- Replacement of fuel oil by CNG or other fuel.

Energy substitution

- Replacement of electric heaters by steam heaters
- Replacement of steam based hot water by solar systems

EE Benefits

Industry

- Reduced energy bills
- Increased
 Competitiveness
- Increased productivity
- Improved quality
- Increased profits!

Nation

- Reduced energy imports
- Avoided costs can be used for poverty reduction
- Conservation of limited resources
- Improved energy security

Globe

- Reduced GHG and other emissions
- Maintains a sustainable environment