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Abstract

Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated.
Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic
megafaunal abundance, mostly echinoderms, by 9–20 months. Subsequent diet studies suggested that carrion is the
grenadier’s most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in
grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at
Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also
showed an increase in mean size resulting in a ,6 fold change in grenadier biomass. We compared this data with
abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A
significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally
migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the
target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when
using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier
abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity,
migration is likely responsible for the results and the location of hake spawning probably is more important than the size of
the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal
fishes’ population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting
epipelagic fish stocks could readily modulate deep-sea fish dynamics.
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Introduction

Abyssal fishes live in the largest habitat on earth. Many are

predators and scavengers [1,2,3,4] so they may substantially

influence community dynamics across trophic levels over large

areas of the planet. Top predators have been shown to alter the

abundances and behaviors of their prey populations, exert

selective pressures, alter biodiversity and alter biogeochemical

cycling in both marine and terrestrial systems [5,6,7,8,9]. Much of

our understanding of top down effects in ecosystems is derived

from time-series of abundance and/or fishing data. The abun-

dance or distributions of top predators in marine ecosystems also

have been shown to be controlled by interannual scales of climate

forcing such as El Nino and the PDO [10,11,12] and frequently

long term reductions are observed as a consequence of fishing.

Few time series of deep-sea systems exist from which the factors

affecting abyssal fish populations can be evaluated.

A unique abyssal site, Station M, in the eastern North Pacific

has been comprehensively studied over more than two decades

[13,14]. The dynamics of life at the seafloor are strongly linked to

the flux of particulate organic matter generated in surface waters.

Seasonal and interannual increases in fluxes result in increases in

sediment community activity and macrofaunal abundance,

biomass, and average size and changes in the rank order of the

most important taxa [15,16]. The larger epifaunal megafauna,

principally echinoderms, show similar changes at interannual time

scales, lagging the particulate flux by 11–22 months [17,18].

At Station M, abyssal fishes have been shown to increase three

fold in abundance over a 15 year period [19]. The dominant fishes

are two species of grenadier (Macrouridae), Coryphaenoides armatus

and C. yaquinae, which comprise 97% of the fishes observed in

camera sled transects and baited camera deployments. Their

abundance was significantly correlated to that of the mobile

epibenthic megafauna (mostly echinoderms) but not to surface

climate indices used to predict production or to direct estimates of

food supply, particulate organic carbon (POC) flux. Many

grenadiers are slow growing and can reach ages of ,75 years

[20,21]. Thus the changes in abundance that were observed

almost certainly are driven mainly by migration in response to

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e49332



variation in food availability. Indeed the abundance of epibenthic

echinoderms was correlated to bentho-pelagic fish abundance

[19]. However, later work by Drazen et al (2008), showed that the

two fishes at this site eat very few echinoderms with as much as

69% of the diet of larger C. armatus composed of epipelagic carrion

[1]. The carrion consisted of the remains of epipelagic fishes,

principally jack mackerel and hake, and gonatid squids. The

stomach content analysis was corroborated by stable isotope

analysis of the grenadiers and their prey sources, again suggesting

that carrion was the most important food type [1]. Fatty acid

biomarker work examined the potential for the fishes to consume

different prey and found that while carrion and benthic

crustaceans were consumed that there was no evidence for

substantial consumption of echinoderms, which had distinct fatty

acid signatures [22].

Our goal was to evaluate if changes in carrion supply might

drive the temporal changes in grenadier abundance at Station M.

Several studies have indicated shifts in nekton abundance in the

CA current system. For instance Zeidberg and Robison [23]

showed the dramatic appearance of humboldt squid, Dosidicus

gigas, off central California and persistence in the system from 2002

onwards. Brodeur et al [24] have shown regional shifts in the

nekton community structure between 1998 and 2002 related to a

shift in the sign of the Pacific Decadal Oscillation. We have

analyzed a unique 17 year time series of abyssal grenadier

abundance in conjunction with abundance estimates for surface

living nekton eaten by the grenadiers as carrion. Our results show

a positive correlation to Pacific hake, the most abundant nekton

species in the region and the target of the largest commercial

fishery off the west coast [25,26,27]. Our results suggest that,

unlike other benthic community groups, some abyssal fishes’

population dynamics are controlled by the flux of large particles of

carrion.

Methods

Ethics Statement
The research conducted for this project was done in accordance

with approved protocols (07–039) from the University of Hawaii,

Institutional Animal Care and Use Committee.

Approach
To assess the relationship between carrion supply and grenadier

abundance we correlated the grenadier time series to three metrics

of nekton abundance. Direct estimates of standing stocks of carrion

are not possible because the abyssal scavenging fauna rapidly

removes this food from the seafloor [28,29] and visual observations

are rare, even for large persistent carrion parcels such as dead

whales [30,31,32]. We focused our attention on time series of

abundance of nekton that were important carrion sources to the

grenadiers as determined from diet studies [1]. These are gonatid

squids, jack mackerel (Trachurus symmetricus) and Pacific hake

(Merluccius productus). The latter makes up 61% of the pelagic fish

biomass in the California Current ecosystem [26].

Grenadier data
Grenadier abundance was estimated using 54 towed camera

transects from 1989 to 2007. The study area is known as Station

M (34u 509 N, 123u 009 W), and consists of a 25635 km area of

the seafloor on the Monterey fan at 4100 m depth, 220 km

offshore of Point Conception, California. [13,14] [34u 509 N, 123u
009 W; 13,14].

The camera system and the methods used to estimate fish

density have already been described in detail elsewhere [19,33]. In

short, the camera system was towed along the seafloor at an

average speed of 0.8 m s21 for a mean distance of 1254 m taking

images every 4–5 s. The area viewed was the product of the

distance of the transect and the effective transect width based on

fish visibility across the transect axis [19], which varied between

deployments due to lighting intensity and film development.

Transects conducted within a month of each other (during the

same field event) were considered replicates and density estimates

were averaged. This yielded 39 time point estimates across the

study period.

Size frequency distribution of the grenadiers was also deter-

mined. This was not possible using the towed camera because of

the variable position and orientation of the fish above the seafloor.

Downward looking baited cameras were used 10 times from

1990–1992 [34] and 3 times in 2005. In 2005 the ‘‘Sprint’’ video

lander was used, recording 1 min video sequences with 4 min

intervals between them. The characteristics of this lander have

been described elsewhere [35], with the only modification being

the removal of the electrical stimulation system so that fish could

feed at the bait undisturbed. Fish total length was measured by

taking individual frames from the video sequence and digitizing

along the centre line of fish using Image J. From 1995–1998

grenadiers were captured during 8 sampling events using baited

traps and longlines [36]. Fish total and pre-anal fin length were

measured directly and their wet weight was estimated from

existing length weight relationships for Coryphaneoides spp. In the

NE Pacific [37]. Small grenadiers (,20 cm TL) are rarely

observed at baited cameras [38]. So while the video lander, traps

and longlines may not sample the entire grenadier size distribu-

tion, all of these sampling approaches were baited so they are

internally consistent.

Nekton data
The California Cooperative Fisheries Investigation (CalCOFI)

has conducted a comprehensive survey of fish larvae and eggs

from the 19509s to the present day from Baja, California north to

the US-Canadian border (http://calcofi.org/). Hake and jack

mackerel eggs hatch in about one day of being spawned [39] so the

local abundance of eggs will positively correlate with local

spawning biomass of adults. Egg abundance is used to assess

spawning stock biomass in fisheries assessments [40,41] including

those for hakes [42,43,44]. There are no direct estimates of

mortality during spawning for either hake or jack mackerel. In the

absence of such data we must assume that mortality is constant

over time for adult fish so that temporal variations in abundance of

fish will be directly related to numbers of dying fish and sinking

carcasses.

Several sampling types have been employed by the CalCOFI

survey. Surface tows (Manta net) and vertical tows were excluded

because hake and jack mackerel eggs were only identified and

counted in these samples from 2006 to the present. An oblique

bongo net system was used at all sampling stations and years and

eggs were counted starting in 1988. This is a paired 71 cm

diameter, 505 mm mesh net system. All tows were fished at 1–2

knots to 210 m depth. All data were standardized for the volume

of water filtered. For squid, only Loligo opalescens paralarvae were

counted. Gonatid squids brood their eggs in the meso and

bathypelagic [45] thus their larvae are unlikely to appear in the

CalCOFI samples and we could find no other alternative data

sources with which to estimate their abundance off California.

The CalCOFI survey uses a regular suite of stations oriented in

lines offshore in a southeasterly direction (330u) perpendicular to

the California coastline. Lines are spaced 40 nmi apart in the

offshore locations and stations are placed 20 to 40 nm apart along

Carrion and Deep-Sea Fishes
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each line. Since 1985 the CalCOFI program regularly sampled

from line 76.7 off central California to line 93.3 at the US-

Mexican border (Figure 1). Lines 60–73.3 were sampled in some

years and we analyzed the data for this larger area as well. Stations

are occupied on each line from the nearshore environment to

offshore several hundred km. We examined all stations on these

lines offshore of the relatively shallow basins in between the

Channel Islands (stations 45 and higher). We also examined the

egg time series for all sampling stations within 100 nmi or 1.5

degrees of Station M (lines 70–80 and stations 60–90). Surveys

were conducted quarterly and all data were converted to a

13 month moving average of egg abundance (# 1000 m23) at

each spatial scale.

The US National Marine Fisheries Service and Fisheries and

Oceans Canada conduct annual stock assessments for pacific hake

along the west coast of North America. This process synthesizes a

considerable amount of data to generate models that estimate each

year’s total biomass and female spawning biomass among other

variables [25]. Hake move offshore to spawn but the juveniles do

not, so we used the female spawning stock biomass as the most

appropriate index of potential carrion supply to grenadiers. The

data we used were model median values.

Other time series of nekton abundance or community

composition are available and have been summarized in Brodeur

et al [46] based on coastal trawl and acoustic surveys. A pelagic

trawl survey, focused on sampling young of the year rockfish, from

Cape Mendocino south to San Diego covers the time period of

interest [47]. However, it extends only 50 nmi offshore and data

were for mobile 1 year old hake (no data for jack mackerel), thus

the CalCOFI data seemed a better source of information. There is

also a biennial acoustic survey along the US West coast to survey

hake biomass [48]. Sampling is during the summer when the

adults are feeding at the shelf break. The survey covers from

Queen Charlotte Sound, Canada to 35.7u N (just north of Station

M) and from the 50 m to the 1500 m isobath in transects every

,20 km latitudinally (Fleischer et al 2005). So this time series does

not characterize the hake population when it could be available to

abyssal scavengers. Furthermore, during the survey season few

hake are reported south of San Francisco. Due to the character-

istics of these surveys they were not used to evaluate temporal

patterns in nekton communities near Station M.

Data analysis
Correlations were performed between grenadier and nekton egg

monthly abundance using 13 month centered moving averages

from the time series because they were discontinuous. Correlations

with time lags of 212 to +12 months were used. Yearly estimates

of hake female spawning stock biomass were also correlated to

yearly averages of grenadier abundance. In this case no time lags

were used because of the broad temporal scale of the measure-

ments. To correct for serial autocorrelation the modified Chelton

method was used [49]. Tests were considered significant if

p,0.05. All statistical analysis was conducted using Statistica 7.1

software (Statsoft Inc., www.statsoft.com).

Results

In addition to previously documented increases in the abun-

dance of grenadiers at Sta. M. [19], we show that their average

size has increased compared to the earliest portion of the time

series (ANOVA, F2,473 = 52, p,0.001, Figure 2). 197 fish

measured in baited camera deployments from 1990–1992 had a

Figure 1. Stations used for analysis from the California Cooperative Fisheries Investigation (CalCOFI) fish egg surveys. The California
coastline is depicted from San Diego in the south to San Francisco to the north. Several of the sampling line numbers are shown for reference. Station
M is shown by the star.
doi:10.1371/journal.pone.0049332.g001
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mean total length (TL) of 46 cm. 159 fish measured from 1995–

1998 had a mean TL of 59 cm similar to that measured from

2004–2005 (55 cm, 117 fish). This change in length from the first

period to the last two is a change in mean mass of 0.4 to .0.8 kg

based on length-weight relationships [37].

Significant correlations between grenadier abundance and hake

but not jack mackerel egg abundances were found (Figures 3 and

4). Grenadier abundance was negatively correlated with jack

mackerel egg abundance over most of the time lags but not

significantly so. In contrast, hake egg abundance was positively

correlated with grenadier abundance at all spatial scales and

stronger at the smaller 100 nmi spatial scale (Figure 4). At the

larger spatial scales significant correlations (p,0.05) occurred

when hake egg abundance led grenadier abundance by 0–

5 months. At the smaller 100 nmi scale correlations were

significant from +6 to 27 months. These correlations are

influenced strongly by the coincidence in peak years (2001–

2002) later in the time series though at the 100 nmi scale the

fluctuations in both grenadier and hake egg density are also

significantly correlated during the early to mid 19909s (Figure 3).

Correlations between yearly estimates of hake female spawning

stock biomass along the west coast of the North America and

grenadier abundance at Station M towards the southern extent of

the hake stock were not significant. Although when grenadier

abundance rose at Sta. M in the early 20009s, hake biomass rose

concurrently (Figure 5).

Discussion

The changes in grenadier population structure followed metrics

for hake biomass, suggesting that these abyssal fishes respond

rapidly to changes in epipelagic carrion sources. Rapid consump-

tion once carrion reaches the seafloor [29,30,31] may explain the

small temporal lags (Figure 4) between the abyssal and epipelagic

fish populations at Sta. M. In contrast to the results for hake,

correlations to jack mackerel egg density were negative and

insignificant (Fig. 3). This species has much less biomass in the

California Current ecosystem compared to hake [46] and is widely

distributed without a pronounced spawning period [50,51,52]

which may explain the difference.

Our results show that there was both an increase in abundance

of grenadiers and an increase in mean size such that fish biomass

Figure 2. Size frequency distributions of Coryphaenoides spp. showing an increase in mean size from 1990–92 to 2004–2005.
doi:10.1371/journal.pone.0049332.g002

Figure 3. Time series of grenadier and epipelagic nekton egg
abundances. Grenadier abundance (thick black line) and (a) hake and
(b) jack mackerel egg abundance for the larger sampled area (gray
dots), the annually sampled region (thin gray line) and only stations
within 100 nmi of Station M (thick gray lines) are shown.
doi:10.1371/journal.pone.0049332.g003
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at Station M increased ,6 fold. Almost certainly the changes are

the result of migration rather than local individual and population

growth because of the slow growth rates of grenadiers [von

Bertalanfy k = 0.02–0.11 and longevity 25–73 years; 20,21,53].

Migration rates of 250 km month21 are possible given grenadiers

slow (,0.1 m s21) continuous swimming [54,55]. Studies of

abyssal grenadiers in the North Atlantic and in the central North

Pacific gyre also observed seasonal or interannual changes in

lengths attributing them to migration rather than local population

effects [56,57].

While migration is the most likely explanation for the current

results, grenadier reproduction and/or recruitment variation is an

alternative explanation. Increases in the mean size of grenadiers

and the absence of the smallest individuals (Figure 2) in the latter

sampling periods could be explained by a recruitment pulse which

then moved through the population, perhaps affecting abundance

patterns as well. It has been suggested that deep-sea fishes [58] and

other animals [17] have sporadic recruitment events. However,

this is unlikely in the case of the grenadiers at Sta. M for several

reasons. The changes in size that were observed are not monotonic

with time. The mean size peaked in the 1995–1998 sample

(Figure 2). Also, the change in size likely represents a longer

duration of growth than the time elapsed. There are no validated

age and growth estimates for C. armatus, however, we do know that

other related species in the genus grow very slowly. A recruitment

pulse is also unlikely because the expectation would be an increase

in mean size over time as a good year class moves through the

population but the abundance would also be expected to decline

through natural mortality. A recruitment pulse is also unlikely to

explain our results given the apparently localised area where the

correlation to hake egg abundance was significant.

The location of hake spawning probably is more important than

the size of the spawning stock in understanding the dynamics of

abyssal grenadier populations. The correlation to hake egg density

Figure 4. Correlation coefficients (black) and associate p values (grey) between grenadier and nekton egg abundances. Correlations
were lagged from +12 (eggs leading grenadiers) and 212 (grenadiers leading eggs) months. Correlations to hake (A) and jack mackerel (B) from the
100 nmi (diamonds), regularly sampled area (circles) and larger area (squares) are shown. Solid black symbols for correlation coefficients indicate a
significant correlation (p,0.05 as shown by the corresponding grey symbols).
doi:10.1371/journal.pone.0049332.g004
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is stronger for data from a more localized region (100 nmi),

probably because carrion rapidly settles to the seafloor. Close

spatial coupling is also supported by the finding that hake

spawning stock biomass for the whole California Current system

showed no significant relationship to grenadier abundance. Hake

spawn principally off central and southern California but can

extend off shore of Baja California, Mexico and as far north as

Oregon [26,27,59]. The CalCOFI data set’s regular sampling grid

only covers the middle of this range limiting our ability to quantify

variations in spawning location. However, coastal trawl and

acoustic surveys provide a qualitative comparison to the grenadier

data. They inferred more spawning activity north of California in

the late 1990 s from the presence of pre-recruits and observed a

southern shift in the early 20009s due to a cold water La Nina

event [25,27]. This broad pattern is coincident with the increase in

grenadier abundance at Station M. In spring and summer, hake

move inshore and north to feed and a recent study has shown that

the extent of these movements is affected interannually by

variation in along-slope California undercurrent flow [26]. Thus

it is interesting to speculate that the grenadiers might show a

similar migration pattern on annual or interannual timescales. Not

all peaks in hake egg density correspond to a peak in grenadier

abundance at Sta. M suggesting other factors are also important. It

may be that the pattern we see at Sta. M is part of a larger

heterogenous and changing distribution of grenadiers on the

abyssal floor which is imperfectly captured at our single study

location.

A growing body of literature is illustrating the ways in which

climate, surface productivity and export flux control abyssal

ecosystem function [16,17,60,61]. For the grenadiers, these indices

do not correlate to their population dynamics but proxies for

carrion flux and epibenthic megafaunal abundance both do [19].

The correlations between grenadier and megafaunal abundance

were lagged by 9–20 months, whereas correlations between

grenadier and hake showed lags of less than ,6 months,

suggesting that the grenadiers respond first to trophically more

important carrion [1,22]. This implies that a full understanding of

abyssal ecosystem dynamics needs to incorporate knowledge of

epipelagic nekton as well as primary producers.

Climate and fishing pressures could modulate deep-sea fish

dynamics. Climate change induced surface warming may reduce

epipelagic nekton biomass but due to their mobility can also cause

shifts in their distributions and changes in community composition

[23,46,62,63]. Studies have suggested that fish will move north

[62] and closer to the coast [46,63] as low productivity regions

expand in the gyres. C. yaquinae is limited to the North Pacific

central gyre at depths deeper than 4000 m and may not be able to

follow [64]. C. armatus is found shallower, up to ,3000 m and

worldwide [57], so might be less limited in its movement ability.

Fishing activities in surface waters likely have little influence on

vertical small particle flux and thus on most of the abyssal benthic

community but our results suggest they could affect deep-sea

scavengers, greatly extending the area and vertical extent of fishing

influence. In the short term, fishing can increase carrion flux as a

result of discarded bycatch [65,66]. Fisheries offal has been noted

in the stomachs of deep-sea fishes [67,68]. In the long term, global

reductions in fish stocks [69] should reduce carrion flux [70].

Decreases in whale carrion flux from commercial whaling in the

20th century may have caused extinctions of endemic whale fall

invertebrates [71]. However, in the Atlantic, while Bailey et al

[72] showed changes in fish abundance below the depths reached

by fishing boats, known scavengers were no more likely to change

in abundance than non-scavengers.

Other species of deep-sea fish could be influenced by the

dynamics of epipelagic fish stocks because many feed on carrion

[67,73,74,75,76,77,78,79,80] or are strongly attracted to bait

[29,30,38,55,81,82,83,84,85,86,87,88]. Many of these fishes live in

areas where there are seasonal variations in abundance of

epipelagic species due to migration (i.e. albacore [89] or whales

[32]) or spawning aggregations (i.e. blue whiting or hoki [90,91]).

Future studies of the deep-sea ecosystem should incorporate an

understanding of the status and trends of nekton populations.

Figure 5. Time series of yearly spawning stock biomass of hake [25] and yearly mean grenadier abundance at Sta. M.
doi:10.1371/journal.pone.0049332.g005
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Although time series of abyssal fish populations are rare [the only

other is in the North Atlantic; 72], there is more data for the

continental slopes. These systems are directly affected by fisheries

complicating interpretation of population changes but opportuni-

ties exist to evaluate how pelagic fish dynamics effect deep-sea

demersal fish populations.

Acknowledgments

We would like to thank the many scientists, over the years, who assisted in

time series study of Station M. We also thank the NOAA National Marine

Fisheries Service, Southwest Fisheries Science Center (SWFSC), and

NOAA CalCOFI survey teams for collection and distribution of their data.

Eggs were identified by the SWFSC ichthyoplankton laboratory. Monty

Priede (Oceanlab, Aberdeen) provided grenadier length data from 1990–

1992 baited camera experiments. The manuscript was improved by

comments from Mariah Boyle and two anonymous reviewers. This is

SOEST contribution #8762.

Author Contributions

Conceived and designed the experiments: JCD DMB HAR KLS.

Performed the experiments: DMB HAR KLS. Analyzed the data: JCD

DMB. Contributed reagents/materials/analysis tools: JCD DMB HAR

KLS. Wrote the paper: JCD DMB HAR KLS.

References

1. Drazen JC, Popp BN, Choy CA, Clemente T, De Forest LG, et al. (2008)

Bypassing the abyssal benthic food-web: macrourid diet in the eastern North
Pacific inferred from stomach content and stable isotopes analyses. Limnology

and Oceanography 53: 2644–2654.

2. Pearcy WG, Ambler JW (1974) Food habits of deep-sea fishes off the Oregon

coast. Deep Sea Research 21: 745–759.

3. Gartner JV, Crabtree RE, Sulak KJ (1997) Feeding at depth. In: Randall DJ,
Farrell AP, editors. Deep-sea fishes. San Diego: Academic Press. 115–193.

4. Crabtree RE, Carter J, Musick JA (1991) The comparative feeding ecology of
temperate and tropical deep-sea fishes from the western North Atlantic. Deep

Sea Research 38: 1277–1298.

5. Worm B, Barbier EB, Beaumont N, Duffy E, Folke C, et al. (2006) Impacts of

Biodiversity Loss on Ocean Ecosystem Services. Science 314: 787–790.

6. Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH (2007) Cascading
Effects of the Loss of Apex Predatory Sharks from a Coastal Ocean. Science 315:

1846–1850.

7. Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological

consequences of marine top predator declines. Trends in Ecology & Evolution

23: 202–210.

8. Baum JK, Worm B (2009) Cascading top-down effects of changing oceanic

predator abundances. Journal of Animal Ecology: 1–16.

9. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, et al. (2011) Trophic

downgrading of planet Earth. Science 333: 301–306.

10. Chavez FP, Ryan J, Lluch-Cota SE, Niquen C M (2003) From anchovies to

sardines and back: multidecadal change in the Pacific Ocean. Science 299: 217–

221.

11. Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts

in 1977 and 1989. Progress in Oceanography 47: 103–145.

12. Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton

effect on cod recruitment in the North Sea. Nature 426: 661–664.

13. Smith KL Jr., Druffel ERM (1998) Long time-series monitoring of an abyssal site

in the NE Pacific: an introduction. Deep Sea Research II 45: 573–586.

14. Smith KL Jr., Ruhl HA, Kaufmann RS, Kahru M (2008) Tracing abyssal food
supply back to upper-ocean processes over a 17-year time series in the northeast

Pacific Limnology and Oceanography 53: 2655–2667.

15. Drazen JC, Baldwin RJ, Smith KL Jr. (1998) Sediment community response to a

temporally varying food supply at an abyssal station in the NE Pacific. Deep Sea
Research II 45: 893–913.

16. Ruhl HA, Ellena JA, Smith KL Jr. (2008) Connections between climate, food

limitation, and carbon cycling in abyssal sediment communities. Proceedings of
the National Academy of Sciences 105: 17006–17011.

17. Ruhl HA (2007) Abundance and size distribution dynamics of abyssal epibenthic
megafauna in the northeast Pacific. Ecology 88: 1250–1262.

18. Ruhl HA, Smith KL Jr. (2004) Shifts in deep-sea community structure linked to
climate and food supply. Science 305: 513–515.

19. Bailey DM, Ruhl HA, Smith KL Jr. (2006) Long-term change in benthopelagic

fish abundance in the abyssal N.E. Pacific Ocean Ecology 87: 549–555.

20. Lorance P, Garren F, Vigneau J (2003) Age estimation of roundnose grenadier

(Coryphaenoides rupestris), effects of uncertainties on ages. Journal of Northwest
Atlantic Fisheries Science 31: 387–399.

21. Andrews AH, Cailliet GM, Coale KH (1999) Age and growth of the Pacific
grenadier (Coryphaenoides acrolepis) with age estimate validation using an improved

radiometric ageing technique. Canadian Journal of Fisheries and Aquatic

Sciences 56: 1339–1350.

22. Drazen JC, Phleger CF, Guest MA, Nichols PD (2009) Lipid compositions and

diet inferences of abyssal macrourids in the eastern North Pacific Marine
Ecology Progress Series 387: 1–14.

23. Zeidberg LD, Robison BH (2007) Invasive range expansion by the Humboldt
squid, Dosidicus gigas, in the eastern North Pacific. Proceedings of the National

Academy of Sciences of the United States of America 104: 12948–12950.

24. Brodeur RD, Fisher JP, Emmett RL, Morgan CA, Casillas E (2005) Species
composition and community structure of pelagic nekton off Oregon and

Washington under variable oceanographic conditions. Marine Ecology Progress
Series 298: 41–57.

25. Stewart IJ, Forrest RE, Grandin C, Hamel OS, Hicks AC, et al. (2011) Status of

the Pacific Hake (Whiting) stock in U.S. and Canadian Waters in 2011. Joint US

and Canadian Hake Technical Working Group Report: 1–207.

26. Agostini VN, Francis RC, Hollowed AB, Pierce SD, Wilson C, et al. (2006) The

relationship between Pacific hake (Merluccius productus) distribution and

poleward subsurface flow in the California Current System. Canadian Journal of

Fisheries and Aquatic Sciences 63: 2648–2659.

27. Ressler PH, Holmes JA, Fleischer GW, Thomas RE, Cooke KC (2008) Pacific

Hake, Merluccius productus, Autecology: A Timely Review. Marine Fisheries

Review 69: 1–24.

28. Priede IG, Bagley PM, Armstrong JD, Smith KL Jr., Merrett NR (1991) Direct

measurement of active dispersal of food-falls by deep-sea demersal fishes. Nature

351: 647–649.

29. Yeh J, Drazen JC (2011) Baited camera observations of megafaunal scavenger

ecology of the California slope. Marine Ecology Progress Series 424: 145–156.

30. Soltwedel T, von Juterzenka K, Premke K, Klages M (2003) What a lucky shot!

Photographic evidence for a medium-sized natural food-fall at the deep seafloor.

Oceanologica Acta 26: 623–628.

31. Stockton WL, DeLaca TE (1982) Food falls in the deep sea: occurrence, quality,

and significance. Deep Sea Research 29: 157–169.

32. Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor.

Oceanography and Marine Biology: An Annual Review 41: 311–354.

33. Lauerman LML, Kaufmann RS, Smith KL Jr. (1996) Distribution and

abundance of epibenthic megafauna at a long time-series station in the abyssal

Northeast Pacific. Deep Sea Research I 43: 1075–1103.

34. Priede IG, Bagley PM, Smith KL Jr. (1994) Seasonal change in activity of

abyssal demersal scavenging grenadiers Coryphaenoides (Nematonurus) armatus in the

eastern North Pacific Ocean. Limnology and Oceanography 39: 279–285.

35. Bailey DM, Bagley PM, Jamieson AJ, Collins MA, Priede IG (2003) In situ

investigation of burst swimming and muscle performance in the deep-sea fish

Antimora rostrata. Journal of Experimental Marine Biology and Ecology 285–286:

295–311.

36. Drazen JC (2002) A seasonal analysis of the nutritional condition of deep-sea

macrourid fishes in the north-east Pacific. Journal of Fish Biology 60: 1280–

1295.

37. Drazen JC (2002) Energy budgets and feeding rates of Coryphaenoides acrolepis and

C. armatus. Marine Biology 140: 677–686.

38. King NJ, Bagley PM, Priede IG (2006) Depth zonation and latitudinal

distribution of deep-sea scavenging demersal fishes of the Mid-Atlantic Ridge, 42

to 53uN. Marine Ecology Progress Series 319: 263–274.

39. Pauly D, Pullin RSV (1988) Hatching time in spherical, pelagic, marine fish eggs

in response to temperature and egg size. Environmental biology of fishes 22:

261–271.

40. Koslow JA, Bulman CM, Lyle JM, Haskard KA (1995) Biomass assessment of a

deep-water fish, the orange roughy (Hoplostethus atlanticus), based on an egg

survey. Marine & Freshwater Research 46: 819–830.

41. Zeldis JR (1993) Applicability of egg surveys for spawning-stock biomass

estimation of snapper, orange roughy, and hoki in New Zealand. Bulletin of

Marine Science 53: 864–890.

42. Mason JC (1986) Fecundity of the Pacific hake, Merluccius productus, spawning in

Canadian waters. Fishery Bulletin 84: 209–216.

43. Mehault S, Dominguez-Petit R, Cervino S, Saborido-Rey F (2010) Variability in

total egg production and implications for management of the southern stock of

European hake. Fisheries Research 104: 111–122.

44. Murua H, Ibaibarriaga L, Alvarez P, Santos M, Korta M, et al. (2010) The daily

egg production method: A valid tool for application to European hake in the Bay

of Biscay? Fisheries Research 104: 100–110.

45. Seibel BA, Robison BH, Haddock SHD (2005) Post-spawning egg care by a

squid. Nature 438: 929.

46. Brodeur RD, Pearcy WG, Ralston S (2003) Abundance and distribution patterns

of nekton and micronekton in the northern California current transition zone.

Journal of Oceanography 59: 515–535.

Carrion and Deep-Sea Fishes

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e49332



47. Sakuma KM, Ralston S, Wespestad VG (2006) Interannual and spatial variation

in the distribution of young-of-the-year rockfish (Sebastes spp): expanding and
coordinating a survey sampling frame. CalCOFI Report 47: 127–139.

48. Fleischer GW, Cooke KD, Ressler PH, Thomas RE, Blois SKd, et al. (2005) The

2003 integrated acoustic and trawl survey of pacific hake, Merluccius productus, in
U.S. and Canadian waters off the Pacific coast. US Dept Commer, NOAA Tech

Memo NMFS-NWFSC 65: 1–45.
49. Pyper BJ, Peterman RM (1998) Comparison of methods to account for

autocorrelation in correlation analyses of fish data. Canadian Journal of Fisheries

and Aquatic Sciences 55: 2127–2140.
50. MacCall AD, Stauffer GD (1983) Biology and fishery potential of jack mackerel

(Trachurus symmetricus). CalCOFI Report 24: 46–56.
51. Macewicz BJ, Hunter JR (1993) Spawning frequency and batch fecundity of jack

mackerel, Trachurus symmetricus, off California during 1991. CalCOFI Report 34:
112–121.

52. Theilacker GH (1985) Starvation-induced mortality of young sea-caught jack

mackerel, Trachurus symmetricus, determined with histological and morpho-
logical methods. Fishery Bulletin 84: 1–17.

53. Drazen JC, Haedrich RL (2012) A continuum of life histories in deep-sea
demersal fishes. Deep Sea Research I 61: 34–42.

54. Ruxton GD, Bailey DM (2005) Searching speeds and the energetic feasibility of

an obligate whale-scavenging fish. Deep Sea Research I 52: 1536.
55. Priede IG, Bagley PM (2000) In situ studies on deep-sea demersal fishes using

autonomous unmanned ladder platforms. Oceanography and Marine Biology:
An Annual Review 38: 357–392.

56. Priede IG, Deary AR, Bailey DM, Smith KL Jr. (2003) Low activity and
seasonal change in population size structure of grenadiers in the oligotrophic

abyssal Central North Pacific Ocean. Journal of Fish Biology 63: 187–196.

57. King NJ, Priede IG (2008) Coryphaenoides armatus, the Abyssal Grenadier:
Global Distribution, Abundance, and Ecology as Determined by Baited

Landers. In: Orlov AM, Iwamoto T, editors. Grenadiers of the World Oceans:
Biology, Stock Assessment, and Fisheries. Bethesda, MD: American Fisheries

Society. 139–161.

58. Francis CRIC, Clark MR (2005) Sustainability issues for orange roughy fisheries.
Bulletin of Marine Science 76: 337–352.

59. Horne JK, Smith PE (1997) Space and time scales in pacific hake recruitment
processes: Latitudinal variation over annual cycles. Reports of California

Cooperative Oceanic Fisheries Investigations 38: 90–102.
60. Smith KL Jr., Ruhl HA, Bett BJ, Billett DSM, Lampitt RS, et al. (2009) Climate,

carbon cycling, and deep-ocean ecosystems. Proceedings of the National

Academy of Sciences of the United States of America 106: 19211–19218.
61. Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Arbizu PM (2008)

Abyssal food limitation, ecosystem structure and climate change. Trends in
Ecology & Evolution 23: 518.

62. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution

shifts in marine fishes. Science 308: 1912–1915.
63. Polovina JJ, Dunne JP, Woodworth PA, Howell EA (2011) Projected expansion

of the subtropical biome and contraction of the temperate and equatorial
upwelling biomes in the North Pacific under global warming. ICES Journal of

Marine Science 68: 986–995.
64. Wilson RR Jr., Waples RS (1983) Distribution, morphology, and biochemical

genetics of Coryphaenoides armatus and C. yaquinae (Pisces: Macrouridae) in the

central and eastern North Pacific. Deep Sea Research 30: 1127–1145.
65. Kaiser MJ, Hiddink JG (2007) Food subsidies from fisheries to continental shelf

benthic scavengers. Marine Ecology Progress Series 350: 267–276.
66. Catchpole TL, Frid CLJ, Gray TS (2006) Importance of discards from the

English Nephrops norvegicus fishery in the North Sea to marine scavengers. Marine

Ecology Progress Series 313: 215–226.
67. Drazen JC, Buckley TW, Hoff GR (2001) The feeding habits of slope dwelling

macrourid fishes in the eastern North Pacific. Deep Sea Research I 48: 909–935.
68. Laptikhovsky V, Fetisov A (1999) Scavenging by fish of discards from the

Patagonian squid fishery. Fisheries Research 41: 93–97.

69. Pauly D, Christensen V, Guenette S, Pitcher TJ, Sumaila UR, et al. (2002)
Towards sustainability in world fisheries. Nature 418: 689–695.

70. Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion
structure communities. Trends in Ecology & Evolution 26: 129–135.

71. Smith CR (2006) Bigger Is Better: The Role of Whales as Detritus in Marine

Ecosystems. Whales, Whaling and Ocean Ecosystems: UC Press. 284–298.
72. Bailey DM, Collins MA, Gordon JDM, Zuur AF, Priede IG (2009) Long-term

changes in deep-water fish populations in the northeast Atlantic: a deeper

reaching effect of fisheries? Proceedings of the Royal Society B: Biological
Sciences 276: 1965–1969.

73. Britton JC, Morton B (1994) Marine carrion and scavengers. Oceanography and
Marine Biology: An Annual Review 32: 369–434.

74. Martin B, Christiansen B (1997) Diets and standing stocks of benthopelagic

fishes at two bathymetrically different midoceanic localities in the Northeast
Atlantic. Deep Sea Research I 44: 541–558.

75. Bjelland O, Bergstad OA, Skjaeraasen JE, Meland K (2000) Trophic ecology of
deep-water fishes associated with the continental slope of the eastern Norwegian

Sea. Sarsia 85: 101–117.
76. Anderson M (2005) Food habits of some deep-sea fish off South Africa’s west

coast and Agulhas Bank. 2. Eels and spiny eels African Journal of Marine

Science 27: 557–566.
77. Jones MRL (2008) Dietary analysis of Coryphaenoides serrulatus, C. subserrulatus and

several other species of macrourid fish (Pisces: Macrouridae) from northeastern
Chatham Rise, New Zealand. New Zealand Journal of Marine and Freshwater

Research 42: 73–84.

78. Boyle MD, Ebert DA, Cailliet GM (2012) Stable-isotope analysis of a deep-sea
benthic-fish assemblage: evidence of an enriched benthic food web. Journal of

Fish Biology 80: 1485–1507.
79. Clarke MR, Merrett N (1972) The significance of squid, whale and other

remains from the stomachs of bottom-living deep-sea fish. Journal of the Marine
Biological Association of the United Kingdom 52: 599–603.

80. Mauchline J, Gordon JDM (1984) Feeding and bathymetric distribution of the

gadoid and morid fish of the Rockall Trough. Journal of the Marine Biological
Association of the United Kingdom 64: 657–665.

81. Collins MA, Yau C, Nolan CP, Bagley PM, Priede IG (1999) Behavioural
observations on the scavenging fauna of the Patagonian slope. Journal of the

Marine Biological Association of the United Kingdom 79: 963–970.

82. Witte U (1999) Consumption of large carcasses by scavenger assemblages in the
deep Arabian Sea: Observations by baited camera. Marine Ecology Progress

Series 183: 139–147.
83. Yeh J, Drazen JC (2009) Depth zonation and bathymetric trends of deep-sea

megafaunal scavengers of the Hawaiian Islands. Deep Sea Research I 56: 251–
266.

84. Jamieson AJ, Kilgallen NM, Rowden AA, Fujii T, Horton T, et al. (2011) Bait-

attending fauna of the Kermadec Trench, SW Pacific Ocean: Evidence for an
ecotone across the abyssal-hadal transition zone. Deep Sea Research Part I:

Oceanographic Research Papers 58: 49–62.
85. Priede IG, Godbold JA, King NJ, Collins MA, Bailey DM, et al. (2010) Deep-sea

demersal fish species richness in the Porcupine Seabight, NE Atlantic Ocean:

global and regional patterns. Marine Ecology 31: 247–260.
86. Isaacs JD, Schwartzlose RA (1975) Active animals of the deep-sea floor.

Scientific American 233: 85–91.
87. Jones EG, Tselepides A, Bagley PM, Collins MA, Priede IG (2003) Bathymetric

distribution of some benthic and benthopelagic species attracted to baited
cameras and traps in the deep eastern Mediterranean. Marine Ecology Progress

Series 251: 75–86.

88. King NJ, Jamieson AJ, Bagley PM, Priede IG (2008) Deep-sea scavenging
demersal fish fauna of the Nazare Canyon system, Iberian coast, north-east

Atlantic Ocean. Journal of Fish Biology 72: 1804–1814.
89. Beamish RJ, McFarlane GA, King JR (2005) Migratory patterns of pelagic fishes

and possible linkages between open ocean and coastal ecosystems off the Pacific

coast of North America. Deep Sea Research II 52: 739.
90. Gunn JS, Bruce BD, Furlani DM, Thresher RE, Blaber SJM (1989) Timing and

location of spawning of blue grenadier, Macruronus novaezelandiae (Teloestei:
Merlucciidae), in Australian coastal waters. Australian Journal of Marine and

Freshwater Research 40: 97–112.

91. Ryan AW, Mattiangeli V, Mork J (2005) Genetic differentiation of blue whiting
(Micromesistius poutassou Risso) populations at the extremes of the species range

and at the Hebrides–Porcupine Bank spawning grounds. ICES Journal of
Marine Science 62: 948–955.

Carrion and Deep-Sea Fishes

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e49332


