RECONSTRUCTING THE ACCRETION HISTORY OFTHE GALACTIC STELLAR HALO FROM CHEMICALABUNDANCE RATIO DISTRIBUTIONS (CARDs)

Duane M. Lee (CAS PIFI Fellow/SHAO)

SHAO Research Group: Stellar Clusters and Galactic Astronomy (Jinliang Hou)
Collaborators: Kathryn V. Johnston (Columbia U.), Jason Tumlinson (STScl), Josh D. Simon (OCIW), Bodhisattva Sen, Will Jessop (Columbia U./Statistics)

Reconstructing the Galaxy's Accretion History

 Simulations of Halo Accretion

 Simulations of Halo Accretion}

Credit: James Bullock

Reconstructing the Galaxy's Accretion History

Simulations of Halo Accretion

Reconstructing the Galaxy's Accretion History
Observations of Hierarchical Merging

- Stellar halo "substructure" found using star counts
- Dynamical models can be applied to "extract" recent accretion history
- "Phase mixing" limits the scope of dynamical modeling (no streams)

Reconstructing the Galaxy's Accretion History

Motivation

green - halo
blue - low mass dSph
red - Sgr
cyan-LMC
(data compilation from
Geisler et al, 2007)
\star Observations indicate that dwarf galaxies lie "unique" locations in chemical abundance ratio distribution (CARD) space

Reconstructing the Galaxy's Accretion History

Theory: Accretion Events are recorded in the Halo's Chemical Abundance Ratio Distributions

- "Chemical Tagging" - First envisioned as a means of tracing disk evolution (Freeman \& Bland-Hawthorn 2002; Bland-Hawthorn \& Freeman 2004)

- Observations reveal trends in 2-D metallicity-space
\Rightarrow Metallicity distributions of satellites are correlated with their accretion time \& mass

Reconstructing the Galaxy's Accretion History

Reconstructing the Galaxy's Accretion History

Models: Accretion Events \& the Halo's CARD

- Can we reconstruct the accretion history of the Galactic halo from stellar distributions in 2-D metallicity-space?

Accretion Time [Gyrs] \rightarrow O.I dex errors for mock obs.

Duane M. Lee (SHAO)

Caltech Astronomy Tea Talk - 02/09/20I5

Reconstructing the Galaxy's Accretion History

Models: Accretion Events \& the Halo's CARD

- Can we reconstruct the accretion history of the Galactic halo from stellar distributions in 2-D metallicity-space?
0.1 dex errors for mocke obs.

Reconstructing the Galaxy's Accretion History

Models: Accretion Events \& the Halo's CARD

- Can we reconstruct the accretion history of the Galactic halo from stellar distributions in 2-D metallicity-space?

Accretion Time [Gyrs] O.I dex errors for mock obs.

Duane M. Lee (SHAO)

Reconstructing the Galaxy's Accretion History

Models: Accretion Events \& the Halo's CARD

- Can we reconstruct the accretion history of the Galactic halo from stellar distributions in 2-D metallicity-space?

Accretion Time [Gyrs] O.I dex errors for mock obs.

Duane M. Lee (SHAO)
Caltech Astronomy Tea Talk - 02/09/2015

Reconstructing the Galaxy's Accretion History

Summary of Method

- Construct satellite template sets (STS) to use in generative mixture models of "MW-like" halos
- We apply the EM algorithm to simulated halo accretion data using STS
\uparrow Obtain estimates for the rel. contributions to the total luminosity of each simulated halo

Reconstructing the Galaxy's Accretion History

Parameterizing Accretion History

$$
F\left(x_{n}\right)=\sum A_{i} * F_{i}\left(x_{n}, M_{s a t}, t_{a c c}\right) ; \sum A_{i}=1
$$

$F\left(x_{n}\right)$ => distribution of observed halo stars in C-space ($\mathrm{n}=\#$ of tracked elements)
$A_{i}=>$ accretion history of the halo
$F_{i}\left(x_{n}, M_{s a t}, t_{a c c}\right)=>$ chemical abundance [ratio] distributions of models of dwarfs/accreted systems

Use the Expectation-Maximization Algorithm to determine model contributions to the simulated halos

Reconstructing the Galaxy's Accretion History

Evaluating our EM Estimates

$$
\langle\mathrm{FoE}\rangle=\sum_{j=1}^{m} w_{j} \cdot \mathrm{FoE}_{j}
$$

"Factor-of-Error" values $(\mathrm{FoE})=$ the $\max \left(\mathrm{A}_{E M} / \mathrm{A}_{\mathrm{T}}, \mathrm{A}_{T} / \mathrm{A}_{\mathrm{EM}}\right)$
$j=$ indicates the ${ }^{\mathrm{j}}$ th satellite templates
$\mathrm{m}=\#$ of satellite templates
$\mathrm{w}_{\mathrm{j}}=>$ weighting for average Factor-of-Error <FoE> value

- $\mathrm{w}_{\mathrm{j}}=\mathrm{m}^{-1}$ (uniform weighting) is used for the general valuation of EM estimates (A_{EM}) in the study

Reconstructing the Galaxy's Accretion History

Some Notable Results I

- Results indicate that we can recover a majority of the luminosity function (LF) of the halo in most cases examined with "high precision" - i.e., within a FoE = 2

Reconstructing the Galaxy's Accretion History Accuracy of stellar mass fractions across halo realizations: <FoE>

Reconstructing the Galaxy's Accretion History Accuracy of stellar mass fractions across halo realizations: <FoE>

-3 - $2-1$
Duane $\begin{gathered}{[\mathrm{Fe} / \mathrm{H} \text { H] } \mathrm{Hee}(\mathrm{SHAO})}\end{gathered}$
Caltech Astronomy Tea Talk - 02/09/2015

Reconstructing the Galaxy's Accretion History Accuracy of stellar mass fractions across

Duane $\begin{gathered}{[\mathrm{Fe} \text {. } \mathrm{M} \text { Hee }} \\ \text { (SHAO) }\end{gathered}$
Caltech Astronomy Tea Talk - 02/09/2015

Reconstructing the Galaxy's Accretion History Some Notable Results II

\star Results indicate that we can recover the accretion history of the halo in most cases examined with "high precision" - i.e., within a FoE = 2

Reconstructing the Galaxy's Accretion History

Comparison of results across all STS

Reconstructing the Galaxy's Accretion History

Reliability of results across all STS

Duane M. Lee (SHAO)
Caltech Astronomy Tea Talk - 02/09/20I5

Reconstructing the Galaxy's Accretion History Some Notable Results III

- $w_{i}=\left(A_{T}\right) J^{-1}$ is used for low-mass dwarf weights early Universe. sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs - precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the
\checkmark Method is particularly
- $w_{j}=\left(A_{T}\right)$, is used for high-mass dwarf weights

Reconstructing the Galaxy's Accretion History

- Test of simulation models: \# of "stars" observed range from $\sim 10^{3}-3 \times 10^{4}$
- Planned APOGEE halo observations: \#'s range from ~1000, ~10,000, 25,000+ halo field stars
What about LAMOST???
(from G. Zasowski et al. 2013)

Summary: Typically, we can recover the accretion history for $\gtrsim 75-90 \%$ of the total stellar halo mass to within a factor of ~ 2 in sim halos

Future Work: Development of more realistic CARD models for dwarf galaxy templates

Reconstructing the Galaxy's Accretion History

- Test of simulation models: \# of "stars" observed range from $\sim 10^{3}-3 \times 10^{4}$
- Planned APOGEE halo observations: \#'s range from ~1000, ~10,000, 25,000+ halo field stars What about LAMOST???
(from G. Zasowski et al. 2013)

So...

Summary: Typically, we can recover the accretion history for $\gtrsim 75-90 \%$ of the total stellar halo mass to within a factor of ~ 2 in sim halos

Future Work: Development of more realistic CARD models for dwarf galaxy templates

Reconstructing the Galaxy's Accretion History

- Test of simulation models: \# of "stars" observed range from $\sim 10^{3}-3 \times 10^{4}$
- Planned APOGEE halo observations: \#'s range from ~1000, ~10,000, 25,000+ halo field stars What about LAMOST???
(from G. Zasowski et al. 2013)

So...

Summary: Typically, we can recover the accretion history for $\gtrsim 75-90 \%$ of the total stellar halo mass to within a factor of ~ 2 in sim halos ... and for the MW halo given...
Future Work: Development of more realistic CARD models for dwarf galaxy templates

