

RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS (CARDs)

Duane M. Lee (CAS PIFI Fellow/SHAO)

SHAO Research Group: Stellar Clusters and Galactic Astronomy (Jinliang Hou)

Collaborators: Kathryn V. Johnston (Columbia U.), Jason Tumlinson (STScI), Josh D. Simon (OCIW), Bodhisattva Sen, Will Jessop (Columbia U./Statistics)

Simulations of Halo Accretion

Credit: James Bullock

Simulations of Halo Accretion

Credit: James Bullock

Observations of Hierarchical Merging

- Stellar halo "substructure" found using star counts
- Dynamical models can be applied to "extract" recent accretion history
- "Phase mixing" limits the scope of dynamical modeling (no streams)

Motivation

 Observations indicate that dwarf galaxies lie "unique" locations in chemical abundance ratio distribution (CARD) space

Theory: Accretion Events are recorded in the Halo's Chemical Abundance Ratio Distributions

• "Chemical Tagging" - First envisioned as a means of tracing disk evolution (Freeman & Bland-Hawthorn 2002; Bland-Hawthorn & Freeman 2004)

- Observations reveal trends in 2-D metallicity-space
 - Metallicity distributions of satellites are correlated with their accretion time & mass

Models: Accretion Events & the Halo's CARD

• Can we reconstruct the accretion history of the Galactic halo from stellar distributions in 2-D metallicity-space?

Accretion Time [Gyrs] →

Models: Accretion Events & the Halo's CARD

 Can we reconstruct the accretion history of the Galactic halo from stellar distributions in 2-D metallicity-space?

Models: Accretion Events & the Halo's CARD

• Can we reconstruct the accretion history of the Galactic halo from stellar distributions in 2-D metallicity-space?

Accretion Time [Gyrs] →

Models: Accretion Events & the Halo's CARD

• Can we reconstruct the accretion history of the Galactic halo from stellar distributions in 2-D metallicity-space?

Accretion Time [Gyrs] → 0.1 dex errors for mock obs. 2-8 Gyrs 8-10 Gyrs 10-12 Gyrs 12-14 Gyrs 0-2 Gyrs 0.5 0.0 -0.50.5 $[lpha/{
m Fe}]$ 0.0 Sat. Stellar Mass [M☉] -0.50.0 -0.5 $\cap \cap$ -0.50.5 0.0 [Fe/H]-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1[Fe/H] [Fe/H] [Fe/H]

Duane M. Lee (SHAO)

Caltech Astronomy Tea Talk - 02/09/2015

Reconstructing the Galaxy's Accretion History Summary of Method

- Construct satellite template sets (STS) to use in generative mixture models of "MW-like" halos
- We apply the EM algorithm to simulated halo accretion data using STS
- Obtain estimates for the rel. contributions to the total luminosity of each simulated halo

Parameterizing Accretion History

$$F(x_n) = \sum A_i * F_i(x_n, M_{sat}, t_{acc}); \sum A_i = 1$$

 $F(x_n) =$ distribution of observed halo stars in C-space (n = # of tracked elements)

 $A_i =>$ accretion history of the halo

 $F_i(x_n, M_{sat}, t_{acc}) = >$ chemical abundance [ratio] distributions of models of dwarfs/accreted systems

Use the Expectation-Maximization Algorithm to determine model contributions to the simulated halos

Evaluating our EM Estimates

$$\langle \text{FoE} \rangle = \sum_{j=1}^{m} w_j \cdot \text{FoE}_j$$

"Factor-of-Error" values (FoE) = the max(A_{EM}/A_{T} , A_{T}/A_{EM}) j = indicates the jth satellite templates

<math>m = # of satellite templates

 $w_j =>$ weighting for average Factor-of-Error <FoE> value

- $w_j = m^{-1}$ (uniform weighting) is used for the general valuation of EM estimates (A_{EM}) in the study

Some Notable Results I

→ Results indicate that we can recover a majority of the luminosity function (LF) of the halo in most cases examined with "high precision" — i.e., within a FoE = 2

Reconstructing the Galaxy's Accretion History Accuracy of stellar mass fractions across halo realizations: <FoE>

Accuracy of stellar mass fractions across

Accuracy of stellar mass fractions across

Some Notable Results II

→ Results indicate that we can recover the accretion history of the halo in most cases examined with "high precision" — i.e., within a FoE = 2

Duane M. Lee (SHAO)

Caltech Astronomy Tea Talk - 02/09/2015

Comparison of results across all STS

Duane M. Lee (SHAO)

Reliability of results across all STS

Duane M. Lee (SHAO)

Some Notable Results III

- $w_j = (A_T)_{J^{-1}}$ is used for low-mass dwarf weights
- $w_j = (A_T)_J$ is used for high-mass dwarf weights

Method is particularly sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs — precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early Universe.

- Test of simulation models: # of "stars" observed range from $\sim 10^3$ 3×10^4
- Planned APOGEE halo observations: #'s range from ~1000, ~10,000, 25,000+ halo field stars (from G. Zasowski et al. 2013) What about LAMOST???

Summary: Typically, we can recover the accretion history for ≥75-90% of the total stellar halo mass to within a factor of ~2 in sim halos

Future Work: Development of more realistic CARD models for dwarf galaxy templates

- Test of simulation models: # of "stars" observed range from $\sim 10^3$ 3×10^4
- Planned APOGEE halo observations: #'s range from ~1000, ~10,000, 25,000+ halo field stars (from G. Zasowski et al. 2013) What about LAMOST???

So...

Summary: Typically, we can recover the accretion history for ≥75-90% of the total stellar halo mass to within a factor of ~2 in sim halos

Future Work: Development of more realistic CARD models for dwarf galaxy templates

- Test of simulation models: # of "stars" observed range from $\sim 10^3$ 3×10^4
- Planned APOGEE halo observations: #'s range from ~1000, ~10,000, 25,000+ halo field stars What about LAMOST???

So...

Summary: Typically, we can recover the accretion history for ≥75-90% of the total stellar halo mass to within a factor of ~2 in sim halos ... and for the MW halo given...

Future Work: Development of more realistic CARD models for dwarf galaxy templates