

	CHEMICAL COMPOSITION					
4.05	Constituent	Cladode (dry mass) (%)	Cladode (wet mass) (%)	Fruit pulp (%)		
-	Water	-	88 - 95	84 - 90		
1. 1. F. F. W	Carbohydrates	64 - 71	3 - 7	12 - 17		
C.C.C.	Ash	19 – 23	1-2	0.3 - 1		
ALL R. S.	Fibre	18	1 - 2	0.02 - 3.15		
" mila	Proteins	4 - 10	0.5 - 1	0.21 - 1.6		
	Lipids	1 - 4	0.2	0.09 - 0.7		
1. 1. 1.	Vitamin C		7 - 22 mg	12 - 81 mg		
1 Bar	Calcium	5.6 mg		12.8 - 59 mg		
1. 2. 58	Magnesium	0.2 mg		16.1 - 98.4 mg		
1	Potassium	2.3 mg		90 - 220 mg		
17 45 F.S	Phosphorous	0.1 mg		15 - 32.8 mg		
S. C.S.	Iron	0.14 µg		0.4- 1.5 mg		

- Sta	CHEMICAL COMPOSITION						
	Constituent	Fruit pulp (%)	Orange	Pawpaw			
- Cales	Water	84 - 90	87.8	88.7			
- 10 E S	Carbohydrates	12 - 17	11	10			
· Pola	Ash	0.3 - 1	0.4	0.6			
	Fibre	0.02 - 3.15	0.5	0.8			
A line	Proteins	0.21 - 1.6	0.4	0.6			
	Lipids	0.09 - 0.7	0.1	0.1			
18.1	Vitamin C	12 - 81 mg	50	50			
1. 5-1	Calcium	12.8 - 59 mg	40	20			
- 40. F.S	Magnesium	16.1 - 98.4 mg	> other fruit				
1	Potassium	90 - 220 mg					
T as Fa	Phosphorous	15 - 32.8 mg	= cherry, apricot, watermelon				
- Cha	Iron	0.4 - 1.5 mg					

USES

GENERAL USES:

- food for humans and animals - security (fences) and control of soil-erosion
- by-products like humectants, carminic acid,
- additives, paper
- natural colourants
 flowers
- energy (ethanol +
- methane gas)
- medical applications - cosmetics

-5-	USES				
- <u>-</u>	A) FOOD USES:				
the la	Cladodes	Fruit			
	- Fodder	- Fresh			
	- Food for cochineal insect (<i>Dactylopius coccus costa</i>) – important for carmine dye	- Fresh juice / pulp			
	- Nopalitos	- Jam			
Contra .	- Alcohol	- Alcoholic beverages			
1. 40. F. O	- Jam	- Tuna "cheese"			
1		- Dried sheets			
the la		- Liquid sweeteners			

	USES • A) NUTRITIONAL USES:						
57 42.8°	Produc	By-products					
	Fruit	Cladode	Fruit and cladode				
the la	- juice and nectar	- brine and pickled	- oil from seeds				
- DE	- marmalade, jelly, jam	- sweets	- mucilage from cladode				
a state	- dried fruit	- marmalade, jam	- pigments from skin				
A AL	- sweeteners	- flour	- dietary fibre from cladode				
	- alcohol and wine	- sauce					
· Apla	- tinned fruit	- alcohol					
	- frozen fruit	- edible films					
- Cala		- juice					

210	USES					
States -	B) MEDICINAL USES:					
1. 1. 1. F. B	Cladodes	Fruit				
	- anti-viral	- anti- cancer (prevent proliferation of cells and suppress tumor growth)				
A DA	- anti-inflammatory	-anti-oxidants (vitamin C, carotenoids, certain amino acids, betalains)				
	- pain killers (analgesic)	- anti-inflammatory				
-Sta	- anti-diabetic (lower blood glucose and haemoglobin levels)	 ulcers, allergies, fatigue, rheumatism, diureticum, "hangovers" 				
States -	- high fibre					
A sta	 anti-hypercholesterolemia (lower cholesterol and change LDL) 					

USES				
• C) INDUSTRIAL USES:				
Fruit				
 pulp and skin: natural colourants (betalains) 				
- juice: sweeteners and colourants				
- seeds: oils especially unsaturated fatty acids, e.g. Linoleic acid				
- peels: pectin				
- juice: single cell proteins				
- juice: fermentation substrate (tequila-like, Colonche, Pulque)				
- juice: substrate for production of red pigment by <i>Monascus</i>				
- juice: microbial oil production (poly- unsaturated fatty acids)				

Research projects

Fruit quality: mass, % pulp, % juice, pH and acidity, TSS (°Bx), glucose, fructose, vit C Bloemfontein 42, Cradock 14, Oudtshoorn 16 cultivars

12 Corresponding, 2 seasons

- Fruit juices: %, 42 cultivars, 2 seasons, heat treatments
- Seed oils: % and fatty acid profiles: Bloemfontein 42, Cradock 14, Oudtshoorn 16 cultivars

12 Corresponding, 2 seasons

Stability

Research projects

• Antioxidants: betalains, vitamin C, phenols, carotenes (A. du Toit)

42 cultivars (Bfn) fruit (peel, pulp, seeds) and cladodes

Processed: 5 cultivars, different fruit colours: juice, dry, chutney, heat-treated, pickled

Focus on alternative uses of cactus pear plant (cladodes, fruits and seeds) in food industry

• Mucilage: extraction and characterization;

product development and functional properties: mayonnaise, Turkish Delight, marshmallows (A. du Toit & L. du Toit)

Cladode juices: fruit blends and vegetable blends

Betalains: compare beetroot (purple), Robusta (purple), Algerian (red-pink), Gymno Carpo (orange): extraction, % yields, stability (acid and heat) (V. Rammala)

Evaluation of seeds in terms of:

- Oils and fatty acids (nutraceuticals)
- Proteins and amino acids (nutraceutical & functional foods)

Antioxidant content:

Antioxidants in unprocessed Cactus pear plants: -fruit (peel, pulp and seed)

8 cultivars (O. ficus-indica and O. robusta*) with different fruit colours: Orange: Ofer + Gymno Carpo Red-Pink: Meyers + Sicilian Indian Fig Purple: Robusta* (fodder) + Nudosa Antioxidants: (in peel, pulp, seeds and cladodes)

-Total phenolics (% gallic acid, spectrophotometric) Betalains: Bc and Bx (spectrophotometric) Carotenes (spectrophotometric)

Antioxidant: able to reduce, delay or inhibit oxidation, in low

Antioxidant content:

5 cultivars with most antioxidants (according to colour): Processed: juice

dried chutney preserves pickles

Antioxidant content: (on processed products) -Vitamin C -Total phenolics -Carotene -Betalains

Antioxidant potential:

(fresh and processed fruit and cladodes)

- Rate/speed of a reaction between Activity: antioxidant and oxidant
- Capacity: An amount of free radical scavenged and destroyed by the antioxidant
- 8 unprocessed cultivars (fresh)
- 5 processed cultivars

Free Radical Scavenging (DPPH) **Chelation of Ferrous ions**

Correlation between content and potential Which antioxidant is responsible for capacity?

	The suitability of cactus pear cladodes for the processing of a health beverage						
- Sta	Product	Mango	Beetroot & Strawberry	Kiwi	Guava	Tomato	Significance level
- Sta	Aroma	5.58± 1.63 ^b	$4.68 \pm 1.75^{\text{a}}$	6.70 ± 1.52 ^c	7.28 ± 1.16 ^c	4.20 ± 1.96ª	p < 0.001
- Sta	Taste	5.60 ± 1.78 ^b	4.64 ± 1.70 ^{ab}	6.94 ± 1.41 ^c	7.42 ± 1.14 ^c	4.38 ± 2.44ª	p < 0.001
- Sta	Mouthfeel	5.96 ± 1.76 ^{bc}	$\begin{array}{l} 5.04 \pm \\ 1.94^{ab} \end{array}$	6.90 ± 1.28 ^{cd}	7.18 ± 1.49 ^d	4.66 ± 2.42ª	p < 0.001
-SA	Overall Liking	5.56 ± 1.89 ^b	$4.56 \pm 1.81^{\text{a}}$	6.98 ± 1.33°	7.30 ± 1.36°	4.38 ± 2.36 ^a	p < 0.001
the state							

Acknowledgements

I am thankful for and to the following people and institutions:
 Collaborators especially

 Dr. Herman Fouche, Prof. A. Hugo

 Students (A. Du Toit)
 Funding UFS Strategic Cluster 4

 (Prof. Wijnand Swart)