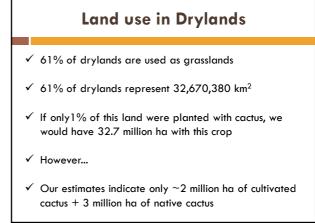
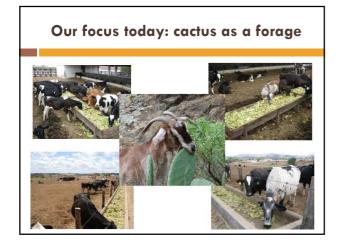
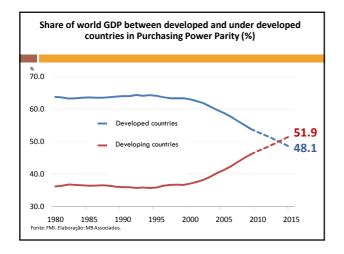
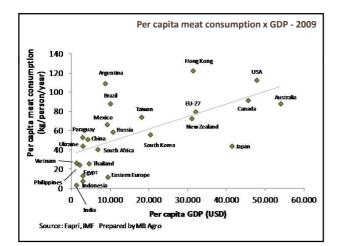
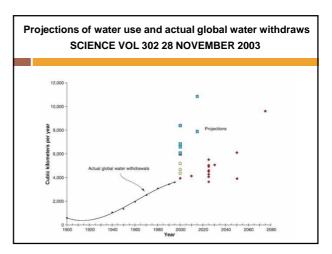

dubeux@ufl.edu



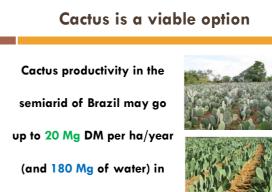


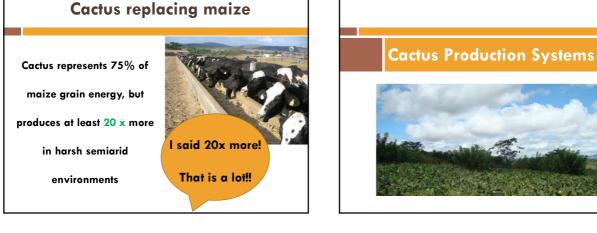



Annual crops + semiarid = **RISK**

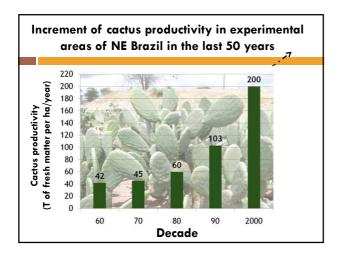

- Erratic rainfall distribution in the semiarid
- $\hfill \square$ Shallow soils with low water storage capacity
- Drought often occurs
- □ Grain productivity in these areas is low
- In the semiarid of Brazil, maize grain productivity is
 600 800 kg per ha/year

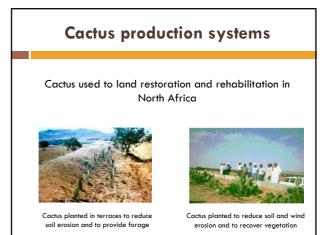
Demand for grain to produce livestock products will grow as prosperity increases

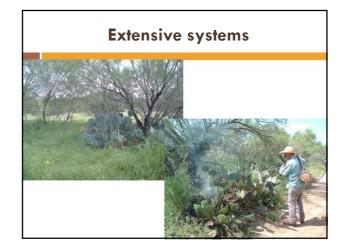

	1993	2020	
	Million metric Tonnes		
China	73	183	
Asia (developing count.)	32	70	
Total Developing count.	194	418	
World	636	945	
	Rosegra	ant and Ringler (19	

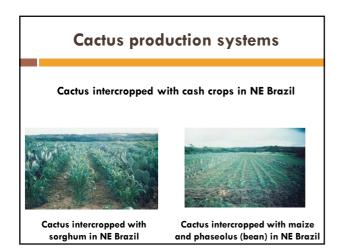


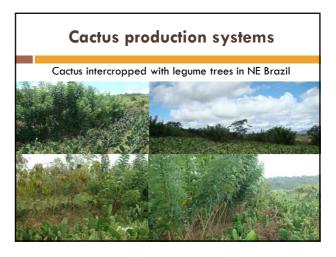
In summary

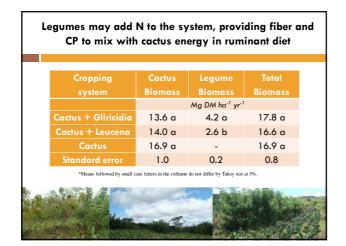

The world demand for grains is increasing
Water is a valuable resource, including for livestock
Drylands may contribute more for food production
In this scenario......

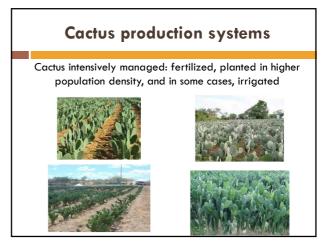




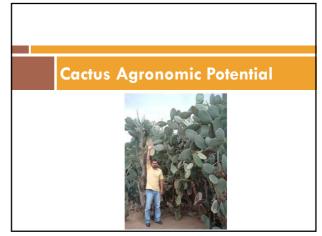


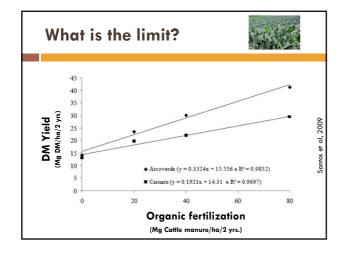


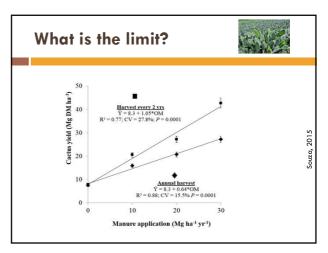


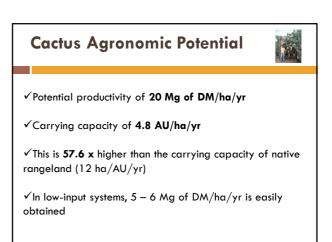

Cactus and soil conservation				
Сгор	Soil losses (t ha ⁻¹)			
Cotton	11.00			
Maize	4.00			
Cactus	2.00			
Guinea grass (Panicum maximum Jacq.)	0.02			
F	onte: Margolis et al. (1985)			

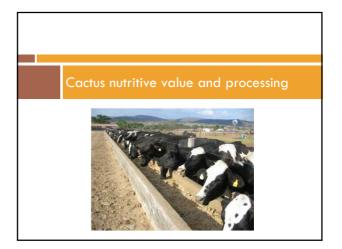








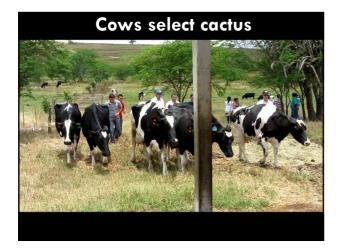




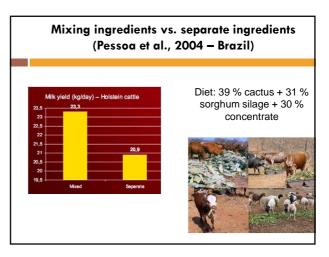
Intensifying a small area wi improve sustainability of sm		
Production System	Gross Income	
Native Rangeland (NR) ¹	x	2011
Improved Rangelands ²	4 x	Source: Dubeux Jr. 2011
50% NR + 50% Buffel grass (BG) ³	4 x	Source: D
50% NR + 40% BG + 10% Cactus ⁴	12.8 x	

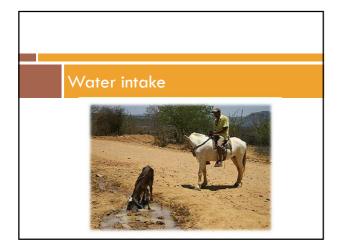
Cactus forage chemical composition varies with:

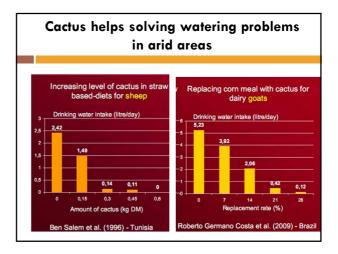
- Cultivar
- Development stage
- Fertilization
- Plant population
- Cladode order

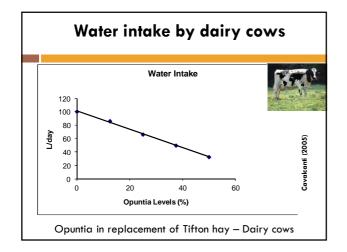

OPUNTIA - AVERAGE CHEMICAL COMPOSITION			
Item	(%)		
Dry Matter	8 - 12		
Crude Protein ¹	4 – 7		
NDF ¹	25 – 30		
ADF ¹	18 – 20		
TDN ¹	65 - 70		
NFC ¹	50 - 55		
		1- DM basis	

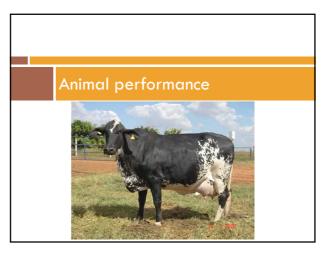
Simple rules

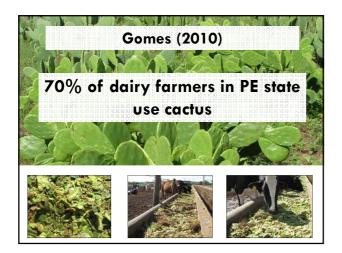

- □ Cactus cannot be fed alone.
- Supplement with CP and fiber in a mixed diet.
- Cactus is rich in soluble carbohydrates, thus, avoid adding molasses and limit the amount of grain in the diet.

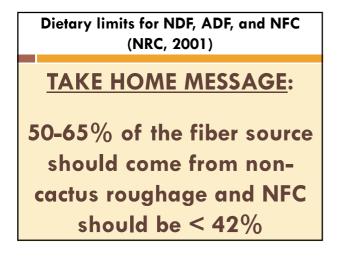


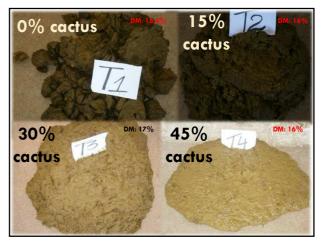


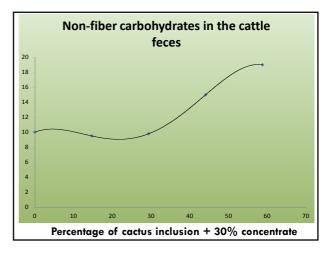

Lambs (Chermiti & Ferchichi, 2000)	
Diets	Daily gain, g
Hay + barley grain	154
Hay + feed blocks (cactus fruit)	163
	À-

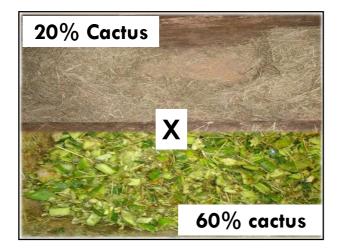

Other processing forms

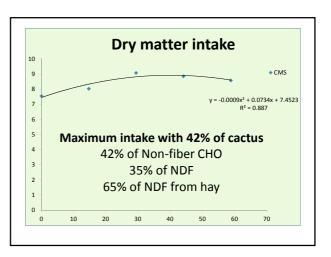

- ✓ Cactus ensiled with other forages might be an option during pruning (Abidi et al., 2013)
- ✓ Sundried cactus replaces coarsely ground cactus and increases marketability as a feed (de Waal et al., 2013)
- ✓ Fermented cactus increases true protein (Oliveira, 2001; Araújo et al. 2005)

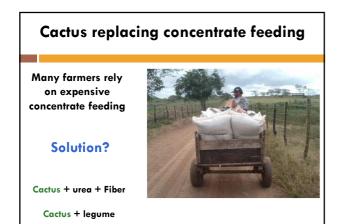


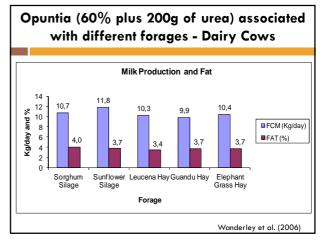


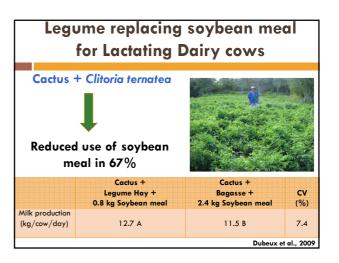


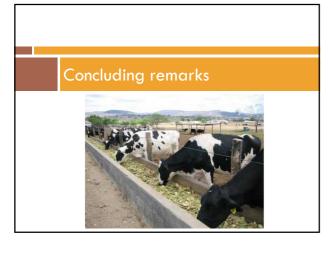

Performance of dairy cows fed cactus with or without maize grain						
Treatments						
ITEM	With Maize	Without Maize				
Dry matter intake (kg DM/day)	15.5 a	15.4 a				
TDN intake (kg/day)	9.4 a	9.1 a				
Fat corrected Milk yield (kg/day)	15.9 a	15.4 a				
% of Cactus	36.0	50.0				
% of concentrate feeding	27.0	13.0				
kg of milk: kg of concentrate	3.5	7.0				
Araújo et al. (2004)						











Urea re Lc		-	ybear iiry co		ıl for	
Variable		% เ	Jrea		Effect	\$408080808080
	0	0.8	1.6	2.4		
DMI (kg/day)	19.4	18.8	19.0	17.2	Linear	
FCM (kg/day)	18.8	18.6	18.1	17.5	Linear	
Fat (%)	3.4	3.4	3.6	3.4	NS	0XXXXXXXXXXX
Urea (g/day)	0	150	300	420		
Cactus %	31.9	34.9	37.8	40.9		
Soybean meal %	21.9	18.0	14.0	10.4		

Item Cactus in DM (%)					
-	None	Low	Medium	High	
Cactus	0	20	40	60	
Forage	70	55	40	25	
Concentrate	30	25	20	15	
NDF	55	45	40	35	
NFC	30	32	34	36	
Cost	U\$	U\$	U\$	U\$	

Cactus for da	iry goat	ls			
	Co	ictus in	the die	t (%DN	۸)
	0	7	14	21	28
Milk yield (kg/day)	1.5	1.6	1.6	1.6	1.5
Milk fat (%)	3.8	3.8	3.7	3.5	3.0
DM intake (kg/day)	1.9	2.1	2.3	2.3	2.3
		Water i	ntake (l	kg/day)
Voluntary	5.2	3.9	2.1	0.4	0.1
Via cactus	0.00	1.7	4.3	7.1	9.1

Concluding remarks

- Cactus is an important forage option to drylands.
- It is more adapted to these regions than annual crops; its nutritive value is close to maize grain.
- It is rich in energy and has low fiber and CP concentrations. If fed with urea cactus replace soybean meal.
- □ Limit in the diet is based on NFC.

- $\hfill\square$ Cactus is an excellent source of water for the animals.
- Forage production may be part of a multipurpose production system of cactus.
- Fiting the right plant and the right animal to the semiarid environment makes more sense than changing the enviroment...

